Inositol trisphosphate receptor calcium release is required for cerebral artery smooth muscle cell proliferation.
نویسندگان
چکیده
Vascular damage signals smooth muscle cells to proliferate, often exacerbating existing pathologies. Although the role of changes in "global" Ca2+ in vascular smooth muscle (VSM) cell dedifferentiation has been studied, the role of specific Ca2+ signals in determining VSM phenotype remains relatively unexplored. Earlier work with cultured VSM cells suggests that inositol 1,4,5-trisphosphate receptor (IP3R) expression and sarcoplasmic reticulum (SR) Ca2+ release may be linked to VSM cell proliferation in native tissue. Thus we hypothesized that SR Ca2+ release through IP3Rs in the form of discrete transient signals is necessary for VSM cell proliferation. To investigate this hypothesis, we used mouse cerebral arteries to design an organ culture system that permitted examination of Ca2+ dynamics in native tissue. Explanted arteries were cultured in normal medium with 10% FBS, and appearance of individual VSM cells migrating from explanted arteries (outgrowth cells) was tracked daily. Initial exposure to 10% FBS increased Ca2+ waves in myocytes in the arteries that were blocked by the IP3R antagonist 2-aminoethoxydiphenylborate (2-APB). Inhibition of IP3R opening (via 100 microM 2-APB, 10 microM xestospongin C, or 25 microM U-73122) dramatically reduced outgrowth cell number compared with untreated or ryanodine-treated (10 microM) arteries. Consistent with this finding, 2-APB inhibited cell proliferation, as measured by reduced proliferating cell nuclear antigen immunostaining within 48 h of culture but did not inhibit cell migration. These results indicate that activation of IP3R Ca2+ release is required for VSM cell proliferation in these arteries.
منابع مشابه
Ca release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells
Gonzales AL, Amberg GC, Earley S. Ca release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299: C279 –C288, 2010. First published April 28, 2010; doi:10.1152/ajpcell.00550.2009.—The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membran...
متن کاملType 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca signals, and vasoconstriction in cerebral arteries
Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 295: C1376–C1384, 2008. First published September 17, 2008; doi:10.1152/ajpcell.00362.2008.—Inositol 1,4,5trisphosphate receptors (IP3Rs) regulate diverse physiological functions, inclu...
متن کاملReceptor for activated protein kinase C1 regulates cell proliferation by modulating calcium signaling.
Receptor for activated protein kinase C1 (RACK1) is an intracellular scaffolding protein known to interact with the inositol-1,4,5-trisphosphate receptor and thereby enhance calcium release from the sarcoplasmic reticulum. Because calcium signaling may affect vascular smooth muscle cell proliferation, we investigated whether RACK1 regulates proliferation of rat preglomerular microvascular smoot...
متن کاملType 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP(3)R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP(3)R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethox...
متن کاملMetabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes.
We examined the effects of metabolic inhibition on intracellular Ca(2+) release in single pulmonary arterial smooth muscle cells (PASMCs). Severe metabolic inhibition with cyanide (CN, 10 mM) increased intracellular calcium concentration ([Ca(2+)](i)) and activated Ca(2+)-activated Cl(-) currents [I(Cl(Ca))] in PASMCs, responses that were greatly inhibited by BAPTA-AM or caffeine. Mild metaboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006